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Abstract. The peak profiles of coherent scattering obtained in powder diffraction experiments 
that reflect the dimensionalitj of the ordered system are discussed. The well known 
expression t h a  generates the powder diffraction pattern of a two-dimensionally ordered system 
is generalized to include couplings along the third dimension. Attention is concentrated on the 
magnetic system, and the interactions between the adjacent layers are allowed to be either 
ferromagnetic or antiferromagnetic. A twodimensionally ordered system gives B r a g  peaks 
with chmcteristic sawtooth profiles at the {hk]  positions. As the correlations between the 
ordered layers develop, new B r a g  peaks at the {khl) positions appear and their widths are 
closely related to the correlation length along the third axis. A finite correlation length gives 
a width which is broader than the insmmental ie~olution, and its intrinsic width is inversely 
proportional to the carrelation length. In the limit for long-range correlation along the third axis. 
symmetric peaks with their widths consistent with the instrumental resolution are then obtained. 
Neutron magnetic diffraction patterns t&en at low tempem- an various high-T, oxides "e 

used as examples to illustrate the expression obtained. 

1. Introduction 

In layered compounds the interaction strength among the atoms within the layer (designed 
as the a-b plane) is usually much stronger than those along the third axis (designed as the c 
axis), i.e. Job >> J,. and they form quasi-two-dimensional systems. Two-dimensional (ZD) 
phenomena can then be expected in the layered systems. However, the interactions along 
the c axis can still play a significant role in determining the basic properties of the layered 
systems. For instance, three-dimensional (3D) magnetic order can be induced by a finite J, 
through a domain-enhancement effect in XY and Heisenberg systems even if J,  << Job. In 
a strictly 2D king system, where J, = 0, 3D magnetic order is also induced (to minimize 
the total energy of the system) in such a way that it shows true long-range order at finite 
temperatures [l]. 

At the temperature for which the magnetic correlations in the a 4  planes begin to 
develop, a quasi-2D magnetic system enters the 2D short-range ordered state that has a 
finite correlation length. As the temperature is reduced, when the correlation length in the 
plane reaches infinity, the system then is ordered two-dimensionally. The temperature at 
which the intraplane correlations reach infinity is the 2D ordering temperature of the system. 
If the couplings along the c axis are much weaker than those in the planes, the correlations 
along the c axis may still remain thermally random as the system orders two-dimensionally. 
However, once the ions in the planes are ordered, the couplings between the adjacent 
planes are then enhanced by domain population, which results in a rapid development of 
the correlations along the c axis. The system then enters & imperfect 3D ordered state in 

0953-8984/95/326513+10$19.50 @ 1995 IOP Publishing Ltd 6513 



6514 W-H Li et nl 

which it has a long-range correlation in the plane but a short-range correlation along the 
c axis. At even lower temperatures, the system eventually will order three-dimensionally 
with infinite correlation lengths along all three crystallographic directions. The temperature 
at which this occurs is the 3D ordering temperature of the system. The difference between 
the 2D and the 3D ordering temperatures is typically a few tenths of a degree, and it is 
usually difficult to observe this difference clearly [2,3]. Nevertheless, as more and more 
layered compounds with much weaker interplanar couplings are discovered, observation of 
the crossover from 2D to 3D character becomes feasible. 

2D magnetic behaviour has been observed [&lo] in many of the high-Tc oxides by 
neutron diffraction, and the crossover from 2D to 3D magnetic character has been observed 
in several single-crystal samples [5,7]. If a powder sample is used, which consists of a 
collection of single crystals oriented randomly in all possible directions, the scattering must 
be averaged over all possible orientations of reciprocal space. In this study, we obtain 
an expression for the intensity distribution of the Bragg scattering from a powder sample, 
spanning the limiting cases from 2D short-range order to 3D long-range order. It clearly 
shows that the profile of the diffraction peaks depend strongly on the correlation length, and 
thus the dimensionality of the ordered system. 

2. Theoretical considerations 

In a purely 2D system the scattering from each of the ordered layers are completely 
uncorrelated, since the phase differences among the scattering amplitudes of the ordered 
layers are completely random [ll]. The scattering plane of a 2D lattice thus consists 
of an ordered array of Bragg rods rather than Bragg points. Coherent scattering occurs 
whenever the wavevector change Q = k'- k, where k and k' are the incident and scattered 
wavevectors, respectively, lies on one of the scattering rods. When a powder sample is 
used, the scattering rods must then be averaged over all possible orientations which results 
in a very asymmetric form for the scattering characterized by a sharp leading edge on the 
small-Q side followed by a trailing edge extending to larger Q. In the scattering process, if 
Q is too small to reach a rod, then no coherent scattering occurs. As Q is increased, it will 
eventually exceed the minimum required to reach a rod. The scattering intensity abruptly 
increases as this occurs and then gradually decreases as Q is further increased until another 
rod farther out in reciprocal space is intersected and a second set of intensity peaks in. 
The powder diffraction peaks of a 2D system hence display a characteristic sawtooth shape 

As the layers are coupled together, the phase differences among the scattering amplitudes 
of the ordered layers are then coupled, and the scattering profile from the ordered layers 
gradually transforms from the 2D sawtooth form into symmetric lines. In the limit of long- 
range correlations along the c axis, the system becomes fully 3D. The uniform Bragg rods 
for the 2D system then renormalize into discrete Bragg points for a 3D system. Each of 
the three components of Q must now be restricted to specific values for observing Bragg 
scattering. An average over all possible orientations for powder samples then give rise to 
discrete spherical shells for scattering, and the projection of these shells onto the scattering 
plane yields a series of concentric circles. Discrete symmetric peaks with widths that are 
consistent with the instrumental resolution are therefore expected for Bragg scattering from 
3D long-range ordered systems [15]. 

The scattering amplitudes of two magnetically coupled layers are different by a phase 
factor Cexp(iQ . d), where d is the perpendicular component of the vector connecting the 

[12-141. 
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two layers, and C is a constant describing the type of interplane coupling: 

+1 ferromagnetic coupling 
- 1 antiferromagnetic coupling. 

C = {  

The phase coupling among the ordered layers results in an undulation of the scattering 
intensity along the 2D rods and consequently a modulation in the diffraction profile. 
At a scattering angle 20, the intensity of the (hk) magnetic reflection (characterized by 
wavevector Q) from an N-layer coupled system is given as 

where Mhfi is the multiplicity of the [hk) reflection, and FM(Q) is the magnetic structure 
factor of the 2D magnetic unit cell which takes the form 

FdQ) = x[f,(Q)exp(-Wj)exp(iQ. ~ j ) l Q  x CEj x Q) (2) 

where fj(Q) is the magnetic form factor which is Fourier transform of the atomic 
magnetization density of the j th  ion, M, is the thermal average of the magnetic moment on 
the jth ion located at T,, Q is the unit vector along the direction of Q, and the sum extends 
over all magnetic ions in the magnetic unit cell. At low temperatures the contribution from 
the Debye-Waller factor exp(-W,), which accounts for the thermal vibration of the jth 
ion about its equilibrium position, ds close to. unity and can be neglected. P(N) sums the 
phases .of the N ordered layers according to 

(3) 

so that the correlation length along the c axis is given by L, = (N - 1)d.  The 
angular distribution of the scattering intensity is mainly controlled by the quantity S(0) 
in equation (l), and it is given as 

j 

P ( N )  = 1 + Cexp(iQ. d) + C2exp(iQ. 2d) f . . . + C(N+’)exp(iQ. (N - I)@ 
i l  

where L is the correlation length of the magnetic ions that Fepresents the characteristic size 
of the ordered domain of the layers, A is the wavelength of the incident neutrons and is 
the Bragg angle at which Q first intercepts the scattering rods. We note that 

1 -2CNcos[(4~Nd/A)sin0sin~] + C Z N  
1 - 26 cos[ (4Jrdlh) sin 0 sin (D] + C2 

In a 2.9 scan, one experimentally scans the instrumental resolution over the intrinsic 
scattering lines. The observed angular variation in the intensity hence has the form of the 
instrumental resolution function convoluted with the intrinsic profile, i.e. 

(5) l p ( N ) 1 2  . 

where R(B‘-0, W) is the instrumental resolution function of width W and centred at 0. We 
note that the instrumental resolution of a neutron diffractorneter may be well approximated 
by a Gaussian function, and its width is determined by the collimation and monochromating 
crystal used [16]. 
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Figure 1. Intensity versus scattering angle calculated for the [ f $} wavevector using N = 1 and 
coneliltion lengths of L = 20,50, 100 and 500 A. Thc width of the peak depends strongly on 
L and the pe& position displaced from 2eht towards a larger scattering angle for small values 
Of L .  

3. Diffraction by 2D lattices 

Figure 1 shows the calculated [4$] powder diffraction pattem of a 2D antiferromagnetically 
ordered system. The curve was calculated according to equations (1)-(6) using N = 1, 
L = 20,50,100 and 500 A and a Gaussian instrumental resolution of 1" full width at half- 
maximum (FWHM), which is typical for a neutron diffraction set-up. The intensity abruptly 
increases as the scattering angle 28 exceeds the minimum required for Q = (4irsine)/A 
to reach the {ii} scattering rod; it then gradually and monotonically decreases as 28 is 
increased further. The peak profiles among the curves shown are substantially different. It 
is clear that the widths of the diffraction peaks depend strongly on the correlation length 
and, the shorter the correlation length, the broader is the peak width. However, the widths 
for the curves calculated with L > 500 A are very close to the instrumental resolution, and 
they become difficult to distinguish. Moreover, the peak position is also shifted to a larger 
scattering angle for finite correlations, and this displacement of the peak position can be 
quite large for small values of L. If the 2D character of the reflections was not realized and 
the peaks were treated as 3D powder lines, erroneous conclusions on the lattice constants 
could be easily drawn. 

The Bragg reflections originating from the magnetic ordering of the Tb ions in 
Pb2SrzTbCu,Oa serve as a good example of 2D short-range lattice reflections. The Tb 
atoms in Pb2Sr2TbCugOg form an orthorhombic unit cell, where the distance between the 
nearest neighbours along the c axis is more than four times that in the a-b plane [17]. The 
crystallographic anisotropy leads to highly anisotropic magnetic interactions, which results 
in a 2D magnetic character. Significant magnetic correlations were found [7] to develop 
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below T N 10 K with the correlation length increasing with decreasing temperature, and 
2D long-range order develops at TN = 5.3 K. Figure 2 shows the magnetic Bragg reflection 
obtained from polycrystalline PbzSrzTbCuaOs at T = 6.5 K, which is above the ordering 
temperature. The data were obtained using neutrons with A = 4.21 A, and the index shown 
is based on the Tb chemical unit cell. The magnetic signal shown in figure 2 was isolated 
from the nuclear signal by subtracting the data collected at T = 20 K from the data taken 
at T = 6.5 K. Note that this is the classic profile of a 2D short-range correlation. The solid 
curve shown in figure 2 is a fit of the data to equations (1)-(6) for the (441 wavevector, and 
the correlation length obtained from the fit is L = 150 A. At temperatures below 5.3 K the 
system orders two-dimensionally with the nearest-neighbour spins of the Tb ions aligned 
antiparallel as shown in the inset of figure 2. 
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Figure 3. Magnetic scattering intensiQ observed in 
ErBaZCug0.1 at T = 0.33 K. The width of the peak 
is cnnsistent with the instrument resolution, indicating 
long-range  order^ for the Er spins. The solid c w e  
is the theoretical scattering profile expected for a 2D 
long-range-ordered system. The inset shows the spin 
structure of the Er ions at low temperatures. 

Figure 2. Angular scan through the magnetic scattering 
of PbzSnTbCu3Os at T = 6 5  K. The solid curve is 
a fit to the theoretical curve for the [fi) wavevector. 
and the correlation length thus obtained is 150 A. The 
inset shows the,@ c a n f i g d o n  of the Th ions at low 
temperatom. 

As an example of Bragg scattering from a 2D long-range ordered system, figure 3 shows 
the magnetic reflection obtained from polycrystalline ErBazCuSq at T = 0.33 JS, which 
is below the ordering temperature of the Er spins 1181. The asymmetric sawtooth profile 
with a width that i s  consistent with the instrumental resolution is a classic profile of a 2D 
long-range ordered system. The data were obtained using neutrons with A '= 2.352 A, and 
on the basis of the Er chemical unit cell  the^ peak may he indexed as the {io} reflection. 
The solid curve through the data in figure 3 is a fit of the data to equations ( l t (6 )  for the 
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[ fO] wavevector using N = 1 ,and L = CO. This result indicates that at T = 0.33 K the Er 
spins order two-dimensionally with an infinite correlation length. The Er spins form chains 
along the b axis with spins pointing in the same direction, while the adjacent chains along 
the a axis are antiparallel. The spin configuration is shown in the inset of figure 3. 

I '  " . ' "  I " " " I '  C = l  Ferromagnetic I ' " 4  

20 30 40 50 60 
Scattering Angle 28 (Arb. Uni t )  

Figum 4. ?%e calculated powder pattern for systems with ferromagnetic (C = 1) interplane 
coupling. New peaks at the 41) (where 1 is an integer) positions appeared. AS the correlation 
length along the c axis is increased, the peaks become more symmetric and their widths mower .  

4. Diffraction by 3D lattices 

Figure 4 shows the dependence of the diffraction profile on the correlation length along the 
c axis, where antiferromagnetic long-range intraplane coupling ( L  = CO) and ferromagnetic 
short-range interplane coupling (C = 1 and N = finite) with moments pointed along the c 
axis were assumed. The curves were calculated according to equations (1)-(6) convoluted 
with a Gaussian instrumental resolution of 1' FWHM. As the interplane coupling develops, 
the 2D sawtooth profile renormalizes into more symmetric peaks and new peaks at the [i $11 
(where. 1 is an integer) positions appeared, and the [ f f ] reflection should now be indexed as 
the {$&O] reflection. An integer for the third Miller index means that the magnetic unit cell 
is the same as the nuclear unit cell along that axis. This is as expected, since the coupling 
along the c axis is chosen to be ferromagnetic. As the correlation length along the c axis 
is increased, the peaks become more symmetric and their widths narrower. 

reflection 'shifted' 
to the {&$&I position and new peaks at the [&&;} rather than the positions appear as 
the interplane coupling develops. Figure 5 shows the calculated diffraction profiles for the 

If the interplane coupling is antiferromagnetic (C = -1). the 
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Figure 5. The calculated powder pattern for system with antiferromagnetic (C = -1) interplane 
coupling. The 3D peaks now appear at the Ifif) positions: this reflects the fact chat the 
magnetic unit cell double the nuclear unit cell along 311 three crystallographic directions. 

cases of antiferromagnetic coupling along all three axes where different correlation lengths 
along the c axis were used. The appearance of the ($$$] peaks reflects the fact that the 
magnetic unit cell is now doubled along all three crystallographic directions relative to the 
nuclear unit cell. Figures 4 and 5 clearly indicate that diffraction profiles depend strongly 
on the correlation len,&, and such figures can be used to determine the correlation length 
from the observed diffraction pattern. 

The superconducting properties of most of the high-T, oxides were found to be not 
affected by the magnetic ordering of the rare-earth ions at low temperatures. The rare-earth 
sublattice is therefore believed to be electronically decoupled from the superconducting 
copper-xygen sublattice [19]. One exception to this behaviour occurs in Pr compounds. It 
is now generally believed that the F'r ions are strongly coupled along the c axis through the 
copper-oxygen layers located between them [ZC-ZZ]., The Tb ions in PbzSrzTbCuoOs order 
at TN = 5.3. K nevertheless even at T = 1.36 K the scattering observed [7] is still 2D. The 
coupling of the Pr ions in Pb2Sr2PrCu308 is expected to be stronger than that of Tb ions 
in Pb2Sr2TbCu308. The Pb&zhCulOg system is then a better candidate for observing the 
imperfect 3D diffraction originating from the magnetic ordering of the Pr ions. Figure 7 
shows the magnetic diffraction pattern obtained from Pb-&PrCu308 at T = 1.36 K, which 
is well below TN FI: 7 K 1231, using neutrons with~h = 2.352 8. The widths of the observed 
magnetic peaks are much broader than the 1" expected for the instrumental resolution. The 
solid curve shown in figure 6 is a fit of the data to equations (1)-(6) assuming long-range 
order in the a-b plane (L = CO), short-range correlations (N = 2) along the c axis, and 
a moment pointed along the c axis. The indices shown are based on the Pr chemical unit 
cell, and the underlying spin structure of Pr hence consists of nearest-neighbour spins that 
are aligned antiparallel along all three crystallographic directions as shown in the inset of 
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Figure 6. Magnetic scattering intensity observed in Figure 7. The difference between the diffraction 
PbzSrzPrCu30s at T = 1.36 K.  The solid curve is P fit patterns hken from TIBazPrCuzO, at T = 1.36 K 
tothetheoretiulcurvewithL=ooandN=2,which andT= 16K, wheretheindexed [;$$]and [ff;] 
corresponds to a long-rage order within the layer and reflections are the magnetic intensities that develop 
a short-range order along the c axis. The inset shows at low tempentures. The solid curve is n fit to the 
the spin structure of the Pr ions in PbzSrzPrCu3On. theoretical a w e  with N = m and L = m, which 

corresponds to 3D long-range order. 

Scattering Angle 28 (deg) 

figure 6. 
Although the rare-earth magnetism of the high-T, oxides is in general believed to be 

2D in  nature, 3D ordering has also been observed in many of the layered cuprates. One 
example of 3D behaviour is the Pr ordering observed 1241 in the single-T1-layer compound 
TIBa2PrCuz07 1251. Figure 7 shows the difference between the diffraction patterns taken 
at T = 1.36 K and T = 16 K using neutrons with 1 = 2.352 A, where the indexed ($ii] 
and [ti;] Bragg reflections are the magnetic intensities that develop at low temperatures. 
The widths of the observed peaks &e at the instrumental resolution limit which suggests 
3D long-range order of the Pr spins. The solid curve is a fit of the data to equations (1)-(6) 
with N = 00 and L = CO, i.e. assuming long-range order along all three crystallographic 
directions, and the moment directed along the c axis. All three Miller indices are half- 
integers showing that the nearest-neighbour Pr spins are aligned antiparallel along all three 
crystallographic directions. 

5. Conclusions 

We have obtained an expression that generates the diffraction profiles of ordered systems. 
There are in total five parameters included in the expression. Among them L, the correlation 
length within the 2D layers, and N, the number of layers that are coupled, control the 
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dimensionality of the ordered state. In the case of N = 0 and L = finite, the expression 
gives asymmetric diffraction profiles that describe 2D shoa-range order. If the correlations 
within the layers are extended to infinity, i.e. N = 0 and L = CO, sawtooth diffraction 
profiles that describe 2D long-range order are then obtained. As the correlations among the 
layers develop, i.e. N = finite and L = CO, symmetric diffraction peaks with widths that 
are broader than the instrumental resolution are obtained for imperfect 3D order. In the 
limit of N = CO and L = CO, symmef5c diffraction peaks with widths that are consistent 
with the instrumental resolution are obtained for 3D long-range order. Thus, the expression 
covers the full range from 2D short-range order to 3D long-range order. It is particularly 
useful in studying the effect of temperature on the development of the correlations among 
ions. 

The types of interaction between the ions are specified using two parameters: Mj and 
C representing the intraplane and interplane coupling, respectively. The spin direction of 
the jth ions located in the planes is specified by the direction of Mj, which is the thermal 
average of the magnetic moment on the j th  ion. On the other,hand, scattering of neutrons 
by a spin-up ion has a phase difference of n from that of a spin-down ion. Ferromagnetic 
and antiferromagnetic coupling between the adjacent layers are hence specified by C = 1 
and C = -1, respectively. The fifth parameter &, which is the Bragg angle for Q 
first intercepts the scattering rods, gives the 2D peak position and is determined from the 
intraplane lattice constants. 

Although we have used neutron magnetic Bragg reflection data obtained from the rare- 
earth ordering in high-T, layered cuprates as examples to examine the expression obtained, 
this does not necessarily restrict its application to neutron diffraction data. If, for example, 
x-ray diffraction data were used, the appropriate resolution function in equation (6) can 
be chosen consistent with the x-ray instrument used. Also, if the basic interactions under 
study are not magnetic in nature, the structure factor in equation (2) should be modified 
consistent with the type of interaction under investigation. We finally note that powder 
diffraction profiles from a 2D system show evidence of the 2D character in the form of 
an asymmetric lineshape, where only the magnitude of the reciprocal-lattice vector can be 
identified. Ideally one wouId like to make measurements on single-crystal samples, where 
rods of scattering are directly observed and reciprocal-lattice vectors can then be uniquely 
defined. 
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